Electrochemical reduction of NO by hemin adsorbed at pyrolitic graphite.

نویسندگان

  • Matheus T de Groot
  • Maarten Merkx
  • Ad H Wonders
  • Marc T M Koper
چکیده

The mechanism of the electrochemical reduction of nitric oxide (NO) by hemin adsorbed at pyrolitic graphite was investigated. The selectivity of NO reduction was probed by combining the rotating ring disk electrode (RRDE) technique with a newly developed technique called on-line electrochemical mass spectroscopy (OLEMS). These techniques show that NO reduction by adsorbed heme groups results in production of hydroxylamine (NH(2)OH) with almost 100% selectivity at low potentials. Small amounts of nitrous oxide (N(2)O) were only observed at higher potentials. The rate-determining step in NO reduction most likely consists of an electrochemical equilibrium involving a proton transfer, as can be derived from the Tafel slope value of 62 mV/dec and the pH dependence of -42 mV/pH. The almost 100% selectivity toward NH(2)OH distinguishes this system both from NO reduction on bare metal electrodes, which often yields NH(3), and from biological NO reduction in cytochrome P450nor, which yields N(2)O exclusively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-Field Nuclear Magnetic Resonance of a Nematic Liquid Crystal

appear which matched those observed by Sanchez and Spiro. Figure 9 shows the time development of the observed Raman spectrum at -0.8 V which at long times became the spectrum of high-spin Fe(I1). The time development of the spectroscopic changes at -0.8 V contrasts the instantaneous changes observed in the reduction of adsorbed hemin and instead tracks the slow reduction of the entire solution ...

متن کامل

Direct electrochemical reduction of hemin in imidazolium-based ionic liquids

The direct electrochemical reduction of hemin, protoporphyrin(IX) iron(III) chloride, ligated with strong or weak heterocyclic bases, was investigated in the ionic liquids (IL), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-octyl-3methylimidazolium hexafluorophosphate ([omim][PF6]), using cyclic voltammetry and chronocoulometry. Hemin complexed with N-methylimidazole (NMI)...

متن کامل

Imaging and manipulation of nanometer-size liquid droplets by scanning polarization force microscopy

Using atomic force microscopy in noncontact mode, we have imaged nanometer-size liquid droplets of KOH water solutions on the surfaces of highly oriented pyrolitic graphite and mica. On graphite the droplets prefer to be adsorbed on atomic step edges. Droplets on the same step tend to be evenly spaced and of similar size. The droplets can be manipulated by the atomic force microscopy tip allowi...

متن کامل

Electrochemical Regeneration of Various Graphitic Adsorbents in an Air Agitated Sequential Batch Reactor

With the aim to address the issues related to the regeneration of activated carbon used for wastewater treatment, a novel and state of the art water treatment technology (Arvia) was introduced at the University of Manchester, UK. This technology employs the adsorption of dissolved toxic pollutants present in water onto the surface of graphitic adsorbents followed by their quick and cheap electr...

متن کامل

O2 reduction on graphite and nitrogen-doped graphite: experiment and theory.

An experimental and theoretical study of electroreduction of oxygen to hydrogen peroxide is presented. The experimental measurements of nitrided Ketjenblack indicated an onset potential for reduction of approximately 0.5 V (SHE) compared to the onset potential of 0.2 V observed for untreated carbon. Quantum calculations on cluster models of nitrided and un-nitrided graphite sheets show that car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 20  شماره 

صفحات  -

تاریخ انتشار 2005